About Communications       Author's Guide       Reviewers       Editorial Members       Archive
Archive
Volume 8
2021
Volume 7
2020
Volume 6
2019
Volume 5
2018
Volume 4
2017
Volume 3
2016
Volume 2
2015
Volume 1
2014
AASCIT Communications | Volume 1, Issue 3 | Nov. 10, 2014 online | Page:104-110
Analytical Solutions for Quark Stars with Anisotropy
Abstract
In this paper, we found new exact solutions to the Einstein- Maxwell system of equations within the framework of MIT Bag Model considering a particular form for the measure of anisotropy and a gravitational potential which depends on an adjustable parameter α. Variables as the energy density, radial pressure, tangential pressure, electric field intensity and the metric functions are written in terms of elementary and polinominal functions. We show that the form chosen for the gravitational potential and the anisotropy allows obtain physically acceptable solutions with any value of the adjustable parameter.
Authors
[1]
Manuel Malaver, Universidad Marítima del Caribe, Departamento de Ciencias Básicas, Catia la Mar, Venezuela.
Keywords
Gravitational Potential, Adjustable Parameter, Einstein-Maxwell System, Energy Density, Measure of Anisotropy, MIT Bag Model
Reference
[1]
Kuhfitting, P.K.(2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365- 367 .
[2]
Bicak, J.(2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173.
[3]
Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9.
[4]
Komathiraj, K., and Maharaj,S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav., 39, 2079-2093.
[5]
Sharma, R., Mukherjee, S and Maharaj, S.D.(2001). General solution for a class of static charged stars, Gen.Rel. Grav., 33, 999-110.
[6]
Dey, M, Bombaci, I, Dey, J, Ray, S and Samantra, B.C. (1998). Phys. Lett. B438,123.
[7]
Itoh, N.(1970). Prog. Theor. Phys.44, 291.
[8]
Schwarzschild, K. (1916). Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit, Math. Phys. Tech, 424-434.
[9]
Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373.
[10]
Oppenheimer, J.R. and Volkoff, G. (1939). On massive neutron cores, Phys. Rev., 55, 374- 381.
[11]
Chandrasekhar, S. (1931). Mass of Ideal White Dwarfs, Astrophys. J., 74, 81-82.
[12]
Baade, W., and Zwicky, F. (1934). Cosmic Rays from Super-Novae, Proc. Nat. Acad. Sci. U. S., (20), 259-263.
[13]
Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars, Int.J.Mod. Phys., D16, pp. 1803-1811.
[14]
Herrera, L., and Santos, N.O. (1997), Phys. Rep.286, 53.
[15]
Cosenza, M., Herrera, L., Esculpi, M. and Witten, L.(1981), J.Math.Phys., 22(1), 118.
[16]
Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity, Gen.Relat.Grav., 26(1), 75-84.
[17]
Herrera, L. (1992), Phys.Lett., A165, 206.
[18]
Herrera, L. (1992), Phys.Lett., A165, 206.
[19]
Herrera, L., Ruggeri, G.J and Witten. L. (1979),Astrophys. J., 234, 1094.
[20]
Herrera, L., and Ponce de Leon. J. (1985), J. Math.Phys., 26, 2018.
[21]
Herrera, L., and Santos. N.O. (1998), J. Math. Phys., 39, 3817.
[22]
Bondi.H.(1992), Mon. Not. R. Astron. Soc., 259, 365.
[23]
Maharaj, S.D., Sunzu, J.M. and Ray, S. (2014). Eur. Phys. J.Plus., 129, 3.
[24]
Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133.
[25]
Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001.
[26]
Thirukkanesh, S., and Ragel, F.C. (2013). A class of exact strange quark star model, PRAMANA-Journal of physics, 81(2), 275-286.
[27]
Feroze, T. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035.
[28]
Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications., 1(1), 9-15.
[29]
Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen.Rel.Grav., 45, 1951-1969.
[30]
Thirukkanesh, S., & Ragel, F. C. (2012). Exact anisotropic sphere with polytropic equation of state, Pramana, 78(5), 687-696.
[31]
Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46.
[32]
Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming., 3, 309-313.
[33]
Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of conformal motions, Int.J.Mod.Phys, D13, 149-156.
[34]
Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys.Rev. D27, 328-331.
Arcticle History
Submitted: Sep. 10, 2014
Accepted: Oct. 13, 2014
Published: Nov. 10, 2014
The American Association for Science and Technology (AASCIT) is a not-for-profit association
of scientists from all over the world dedicated to advancing the knowledge of science and technology and its related disciplines, fostering the interchange of ideas and information among investigators.
©Copyright 2013 -- 2019 American Association for Science and Technology. All Rights Reserved.