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n this paper a non linear mathematical model with fractional order ∝, 0 <∝≤ 1 is presented for analyzing and controlling 

the spread of HIV/AIDS. Both the disease-free equilibrium E� and the endemic equilibrium E∗ are found and their stability 

is discussed using the stability theorem of fractional order differential equations. The basic reproduction number R0 plays an 

essential role in the stability properties of our system. When R0<1 the disease-free equilibrium E� is attractor, but when R0> 1, E� is unstable and the endemic equilibrium E∗ exists and it is an attractor. The effect of time delay (τ) on the screening of HIV 

positives that do not know they are infected is discussed. Finally numerical Simulations are also established to investigate the 

influence of the system parameter on the spread of the disease. 

 

Introduction 
 

AIDS (Acquired Immune Deficiency syndrome) is a serious life threatening disease caused by human immune deficiency 

virus (HIV) which is discovered in 1981 in USA. AIDS is incurable disease that has high mortality rate (kills more than 25 

million worldwide per year) also it spread quickly affecting about 14,000 new case/day. Developing of AIDS takes about 6 

month to 15 year. The virus attack and destruct CD�� T-cell ending of loss of cell mediated immunity. The virus is transmitted 

through unprotected sexual contact, blood product route by sharing contaminated needle or transfusion of infected blood, also 

it can be transmitted from mother to her child during pregnancy, lactation, or during birth. Death generally within two years or 

less due to opportunistic infections often due to wide spread malignancy. Applied mathematicians have a great interest to study 

the HIV/AIDS dynamics spread to help biologists to find the appropriate treatment for infected humans, they seek to eliminate 

this threat to humanity. Mathematical models are important tools in analyzing the spread and control of HIV/AIDS as they 

provide short and long term prediction of HIV and AIDS incidences. 

Many models available in the literature represent dynamics of disease by system of non linear ordinary differential equations 

without time delay [1-11]. However, inclusion of delays in fractional differential equations models makes them more realistic. 

In particular, Ram Naresh et al. [5] have proposed and analyzed a nonlinear mathematical model to study the effect of time 

delay in the recruitment of infected persons on the transmission dynamics of HIV/AIDS .Tripathi et .al. [6] have proposed a 

nonlinear model to study the effect of screening of unaware infectives on the spread of HIV/AIDS in a homogenous population 

with constant immigration of susceptibles. Sarah Al-sheikh et al. [7] have studied the local and global stability for the non 

linear system of ordinary differential equations of HIV/AIDS. They also studied the effect of screening of unaware infectives 

on the spread of HIV disease. Srinivasa Rao [8] presented a theoretical framework for transmission of HIV/AIDS epidemic in 

India. Cai et al. [11] investigated an HIV model with treatment, they established the model with two infective stages and 
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proved that the dynamics of the spread of the disease are completely determined by the basic reproduction number R0. 

We will study the nonlinear model with a fractional order ∝, 0 <∝≤ 1	. In recent years fractional calculus has an interest to 

mathematicians as it has many engineering and medical applications. There is more than one definition for the fractional 

derivative [12,13]. In 1867, Gru�newald-Letnicov defined the fractional derivative as, 

D∝f(x) = lim�→� �
1
h∝�	 

Г(k−∝)
Г(−∝)Г(k + 1)	. f(x − kh)

�

&'�

	
	 , n − 1 <∝≤ n 

In 1967 caputo defined the fractional derivative of a function f(x) as,  

D∝f(x) = 1
Г(n−∝)	) (x − t)+,∝,- 	

d+
dx+ f(t)		dt							, n − 1 <∝< /

0

1
 

In this paper we will generalize AIDS/HIV model to a fractional order system of order ∝ in sense of caputo definition 

because it is equivalent to ordinary differential equation when ∝= 1. The population is divided into four sub-classes, the 

susceptible S(t), the infectives that do not now they are infected I-(t), the infectives that know they are infected I3(t) (by 

means of medical screening or otherwise) and the AIDS population A(t), then the model will be, 
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Where all the parameters have a constant values defined as: Q� is the rate of immigration of susceptible, β-	is the per capita 

rate for susceptibles individuals with unaware infectives, β3  is the per capita rate for susceptibles individuals with aware 

infectives, μ is the natural mortality rate unrelated to AIDS, θ is the rate of unaware Infectives to become aware infectives by 

screening, δ is the rate by which types of infectives develop AIDS and d is the AIDS related death rate. It is clear that the 

variable A(t) does not appear in the first three equations, so reducing system (1) we get: 
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Clearly if ∝= 1, the system will be the nonlinear ordinary differential equations as presented in [5-7]. The region of stability 

of the fractional order system as reviewed in [12-14] is the region in which the system eigenvalues λ of the characteristic 

equation obtained from the Jacobian matrix of system (2) at a certain equilibrium point satisfies that, |arg	(λ)| > απ/2 . 
In this work we discuss the stability of the HIV/AIDS model according to the relations between the system parameters. We 

also study the behavior of our system when there is a time delay on the screening. 

This paper is organized as the following: the Equilibria of the model and their stability properties are presented in section 2. 

In section 3 the effect of existence a time delay on the screening on the stability behavior of the model is discussed. Real life 

examples with their numerical solutions are given in section 4, and finally we gave our conclusion in section 5. 

 

Equilibria and Their Stability 
 

The Equilibrium Points of system (2) are obtained by solving the nonlinear algebraic equations 

 D∝S(t) = D∝	I-(t) = D∝	I3(t) = 0 (3) 

System (2) has free equilibrium point E�(CDE , 0,0) if R0< 1, while if R0> 1 there is in addition to E�, a positive endemic 

equilibrium E∗(S∗, I-∗, I3∗) where R0  is the basic reproduction number  defined in [9,5] as: 

 R� = CDGHI(J�E)�HKLME(J�E)(L�J�E) 	,		 (4) 
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and I-∗ = CD(ND,-)ND(L�J�E) , I3∗ =
L
(J�E) I-∗, and		S∗ =

(J�E)(L�J�E)
HI(J�E)�HKL 	.  

The following theorem defines the stability behavior of system (2) around the free Equilibrium point E�. 
Theorem 1 System (2) will be locally asymptotically stable around E� if R� < 1, and unstable if R� > 1. 
Proof Since the characteristic equation of the Jacobian matrix for system (2) around E� is: 

 (−μ − λ	)(λ3 + q-λ + q3) = 0 (5) 

Where  q- = θ + 2δ + 2μ − β-Q�/μ,  q3 = (θ + δ + μ)(δ + μ)(1 − R�). 
The eigenvalues of Eq.(5) are λ- = −μ	, and the roots of the quadratic Equation   

 λ3 + q-λ + q3 = 0		 (6) 

If R� < 1, then q3 > 0 and also  μ(δ + μ)(θ + δ + μ) > 	Q�β-(δ + μ) + Q�β3θ > Q�β-(δ + μ) 
which means that  (θ + δ + μ) > HICDE  , then q- > 0 . Then applying Routh-Hurwitz criteria, insure that E�  is locally 

asymptotically stable. If R� > 1 then q3 < 0, and there is one positive Real root for Eq. (6), thus E� will be unstable. 

Lemma1  System (2) will be locally stable around E� if R� = 1. 
Proof Since R� = 1 , then q3 = 0,  q- > 0 then the roots of Equation (6) will be λ3 = 0	, λP = −q- so the system will be 

locally stable.  

Now we will discuss the stability of the positive equilibrium E∗. 
Definition 1 [14] The discriminate	D(P) of a polynomial  R(λ) = λP + a-λ3 + a3λ + aP is defined by   

 D(P) = 18a-a3aP + (a-a3)3 − 4aP(a-)3 − 4(a3)P − 27(aP)3. (7) 

Let		k = (θ + δ + μ) = β-S∗ + β3I3∗S∗/I-∗. The characteristic Equation of system (2) around E∗ is: 

 λP + a-λ3 + a3λ + aP = 0 (8) 

Where 

a- = δ + 2μ + kI-∗/S∗ + k − β-S∗ 

(9) a3 = (k − β-S∗ + δ + μ) �μ + kI-
∗
S∗ � + kβ-I-∗ 

aP = kI-∗(β-(δ + μ) + β3θ) > 0. 

Theorem 2 Consider R� > 1 in system (2), then the epidemic point E∗ will be asymptotically stable if : 

 D(P) > 0		, a-a3 > aP, ∝∈ (0,1M (10) 

 Or D(P) < 0		, and ∝∈ G0, 3P) (11) 

Where D(P), a-,a3	and		aP are defined in (7, 9). 

Proof For D(P) > 0, a-a3 > aP, and k > β-S∗, then a- > 0, aP > 0, using Routh-Hurwitz criteria, then |arg	(λ)| > απ/2 
and the system will be locally asymptotically stable around E∗. When		D(P) < 0	, ∝∈ G0, 3P), since the value(k − β-S∗)(δ +μ) − β3θS∗ = 0, we get a3 > 0, then the conditions for stability of the fractional order system are satisfied [15], then E∗ is 

locally asymptotically stable. 

 

System with Delay Time on the Screening (W > 0) 
 

Consider the system: 
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Where τ is the delay time on the screening. To discuss the stability of the free disease equilibrium point E�, we examine the  

characteristic Equation of the Jacobian matrix of system (12) that given by, 

 (−μ − λ)Xλ3 + u-λ + u3 + e,Z[(b-λ + b3)] = 0 (13) 

Where  u- = 2(δ + μ) − β-Q�/μ, u3 = (δ + μ)G(δ + μ) − β-Q�/μM, b- = θ, 
b3 = θ ^δ + μ − CDHKE _. The eigenvalues are λ- = −μ  and the solutions of the equation 

 λ3 + u-λ + u3 + e,Z[(b-λ + b3) = 0	 (14) 

First we will approximate a value for the critical time (τ`) over which the system will be unstable. Let e,Z[ = 1 − λτ, 
substituting in (14) we get: 

 λ3 + B-λ + B3 = 0 (15) 

where 	b- = (u- + b- − b3τ)/(1 − b-τ), b3 = (u3 + b3)/(1 − b-τ). 
At λ = rec∝dK ,  then τ will be the critical time τ`. Substituting in (15) and separating the real and imaginary parts we have, 

 r3 cos(∝ π) + B-r cos(∝ π/2) + B3 = 0 (16) 

 B-r sin(∝ π/2) + r3 sin(∝ π) = 0 (17) 

Multiplying (16) by sin(∝ π) , (17) by cos(∝ π) and subtracting, then 

 h = −2 ijKjIk cos(∝ π/2) (18) 

The positive values for h at  
jK
jI < 0 which gives 

τ < (b- + u-)/b3  if b3 < 0, and τ > (b- + u-)/b3 if b3 > 0. 
Substituting by the values of h, B-, B3 in (17) we get, 

 τ` = (−c- +lc-3 − 4c3	)/2,	c-3 > 4c3 (19) 

Where c- = G4b-k(δ + μ)(1 − R�)cos3(∝ m3) − 2b3(b- + u-)M/b33, c3 = G(b- + u-)3 − 4k(δ + μ)(1 − R�) cos3(∝
m
3)M/b33	 

Corollary 1 System (12) will be asymptotically stable around the free Equilibrium point E� if R� < 1 and the delay time 

 τ < τ`. Where τ` is defined by (19). 

 

Stability Behavior of the Point n∗ 
 

Since the characteristic Equation of the Jacobian matrix of system (12) around E∗ is: 

 λP + a--λ3 + a33λ + aPP + e,Z[Gb--λ3 + b33λ + bPPM = 0 (20) 

where 

a-- = μR� + 2(δ + μ) − β-Q�/μR�, a33 = (δ + μ)G2μR� + δ + μM − HICDND (2 +
J
E	),  aPP = (δ + μ) ^μR�(δ + μ) −

HICD
ND _ 

b-- = θ, b33 = θ ^μR� + (δ + μ) − HKCDEND _,  bPP = θ ^μR�(δ + μ) −
HKCD
ND _. 
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Now we try to get an approximate formula for the critical delay time (τ`) over which the system will be unstable. Similarly 

put		e,Z[ = 1 − λτ	in (20) then,	
 λP + A-λ3 + A3λ + AP = 0 (21) 

where 	A- = 1II�pII,pKK[-,pII[ ,  A3 = 1KK�pKK,pqq[-,pII[ ,  AP = 1qq�pqq-,pII[  

We analyzed the stability conditions for the characteristic Equation (21) to find a relation for the time delay τ to conclude the 

following lemma, 

Lemma 2 Consider system (12) is asymptotically stable around E∗ at D(p) > 0, Q-3 > 4Q3 , and   

 aPP + bPP < min s(a-- + b--)(a33 + b33), pKK(1KK�pKK)�pqq(1II�pII)pII 	t  (22) 

then the time delay τ satisfies one of the following conditions: 

 0 < τ < min s -pII ,
1II�pII
pKK , τ-, τ3	t, if  b33, bPP > 0, (23) 

 0 < τ < min s -pII , τ-, τ3	t, if   b33, bPP < 0, (24) 

 max {0, τ3} < τ < min	 s -pII , τ-t, if  b33 < 0, bPP > 0, (25) 

 And, max{0, τ3} < τ < min s -pII , τ-,
1II�pII
pKK t, if  b33 > 0, bPP < 0 (26) 

Where  τ-,3 = -3 ^−Q- ± lQ-3 − 4Q3_,	Q- =
pqqG1qq�pqq,1II,pIIM,pKK(1KK�pKK)

1KK.pqq ,Q3 = (1II�pII)(1KK�pKK),(1qq�pqq)1KK.pqq . (27) 

Proof  Since system (12) is asymptotically stable when D(p) > 0, then Routh-Hurwitz are satisfied for equation (21), 

So A- > 0 which gives, τ < 	 -pII 	x/y	τ <
1II�pII
pKK 	at b33 > 0 or τ > 0	at b33 < 0 since  a-- + b-- > 0, 

AP > 0 gives, τ < 	 -pII since aPP + bPP > 0, and  A-A3 > AP which gives, (a-- + b-- − b33τ)(a33 + b33 − bPPτ) − (aPP +
bPP)(1 − b--τ) > 0, At b33bPP > 0 then τ3 + Q-τ + Q3 > 0 from which τ < τ-,3, and if b33bPP > 0 then τ3 + Q-τ + Q3 < 0 
which gives, τ3 < z < τ- . 

Then τ satisfies the values (23)-(26) at the different values of b33, bPP. It is clear that τ-,3 ∈ {� at  Q-3 > 4Q3, 
Q- < 0, and	Q3 > 0, Which satisfies (22). where Q-, Q3, τ-,3 are defined in (27). 

Lemma 3. Assume that system (12) is asymptotically stable around E∗ at  

D(p) < 0, ∝∈ G0, 3P	), then the time delay τ satisfies one of the following conditions: 

 0 < τ < min s -pII ,
1II�pII
pKK ,

1KK�pKK
pqq 	t, at b33 > 0, bPP > 0, (28) 

 max	{0, 1II�pIIpKK ,
1KK�pKK
pqq } < τ <

-
pII , at b33 < 0, bPP < 0, (29) 

 max	{0, 1KK�pKKpqq } < τ < min s
-
pII ,
1II�pII
pKK t, at b33 > 0, bPP < 0, (30) 

 and 0 < τ < min s -pII ,
1KK�pKK
pqq t, at b33 < 0, bPP > 0 (31) 

Proof  Applying the stability conditions in  [14] for (21), at D(p) < 0, ∝∈ G0, 3P	) then, 

A- ≥ 0, which gives τ ≤ 1II�pIIpKK 		at		b33 > 0, x/y	τ ≥
1II�pII
pKK 	at	b33 < 0 ,   A3 ≥ 0, then τ ≤ 1KK�pKKpqq 	at	bPP > 0, x/y	 

τ ≥ 1KK�pKKpqq 	at	bPP < 0 , and AP > 0 gives, τ < 	 -pqq. Then τ satisfies (28)-(31) at the different values of  b33, bPP. So we can 

conclude the following theorem to ensure the stability of system (12) around E∗. 
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Theorem 3 System (12) will be asymptotically stable around the endemic point E∗ at R� > 1,	if (10) or (11) are satisfied and 

the delay time τ satisfies the inequalities (23)-(26) or (28)-(31) respectively. 

 

Numerical Simulations 

In this section we give some illustrative examples to verify the obtained results on systems (2) and (12). We use the non-

standard finite difference method [13,15] that use the Gru�newald-Letnicov descretization method for solving the following 

examples using Matlab program. 

Example 1: Consider the parameters of system (2) have the following values:	Qo = 200, μ = 0.1, δ = 0.1, θ = 0.015,	 
	β- = 0.00009, β3 = 0.000027, Figure 1 (a, b, c) gives the numerical solution of S(t), I-(t), I3(t). Hence R� = 0.8560 and 

the unique equilibrium point E� = (2000,0,0) is asymptotically stable, this results enhance theorem 1. 

Example 2: Let the parameters of system (12) are: Qo = 1200, μ = 0.019, δ = 0.52, θ = 0.02, β- = 0.00009, β3 =0.000027, then	R� = 10.2817. Figure 2 (a, b, c) gives the time response of S(t), I-(t) and I3(t) when τ = 0, τ = 40 years 

and ∝= 0.5, this results are the same that obtained by theorem 2, 3. 

Example 3: assume that system (12) has the parameters: Qo = 500, μ = 0.01, δ = 0.3, θ = 0.025, β- = 0.00009, β3 =0.000027, at the time delay τ = 0, τ = 35 and ∝= 0.9, Figure 3 (a, b, c) shows that the solution curves tends to the positive 

equilibrium E∗ where R�=13.7578, theorem 2,3 garanteethe obtained  results. 

Example 4: Finally using the parameters: 	Qo = 800, μ = 0.01, δ = 0.5, θ = 0.03, β- = 0.00009, β3 = 0.000027  at the 

time delay τ = 0, τ = 30, and ∝= 0.9, then R� = 13.5686. Figure 4 (a, b, c) represents the time response of S(t),	I-(t), I3(t). 

   

(a) the time response of  S(t) (b) the time response of I-(t) (c) the time response of I3(t) 
Figure 1. Variation of S(t) ,	�-(�), �3(�) against the time,for Example 1 . 

   

(a) the time response of  S(t) (b) the time response of I-(t) (c) the time response of I3(t) 
Figure 2. The time response of S(t), �-(�) and �3(�) of Example 2. 

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

time

s
(t

)

 

 

alpha=1.0

alpha=0.8

0 100 200 300 400 500 600 700 800 900 1000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

I1
(t

)

 

 

alpha=1.0

alpha=0.8

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5

10

15

20

time

I2
(t

)

 

 

alpha=01.0

alpha=0.8

0 200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

12000

time

s
(t

)

 

 

Time Delay=0

Time Delay=40

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

1600

1800

time

I1
(t

)

 

 

Time Delay=0

Time Delay=40

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

time

I2
(t

)

 

 

Time Delay=0

Time Delay=40



ISSN: 2375-3803  47 

 

   

(a) the time response of  S(t) (b) the time response of I-
t� (c) the time response of I3
t� 

Figure 3. Variation of S(t),	�-
��, �3
�� against the time, for Example 3. 

   

(a) the time response of  S(t) (b) the time response of I-
t� (c) the time response of I3
t� 

Figure 4. Variation of S(t),	�-
��, �3
�� against the time, for Example 4. 

Conclusion 
 

In this paper, a nonlinear mathematical HIV model with fractional order � is formulated. The stability of both free and 

endemic equilibrium point are discussed. Sufficient conditions for local stability of the disease free equilibrium point E� are 

given in terms of the basic reproduction number R� of the model, where it is asymptotically stable if R�<1 and the delay time τ  

is less than the critical delay time τ` defined by (19). The positive infected equilibrium E∗ exist when R�>1 and sufficient 

conditions that guarantee the asymptotic stability of this point are given when τ | 0. At 	∝� 1, the stability behavior of system 

(2) will be similar to the nonlinear system of ordinary differential equations discussed in [5, 9] with similar results. Finally 

numerical simulations for different sets of parameters are solved and it is agree with our obtained results concerning with 

system (2) and (12) � 
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